Monday, February 6, 2017

VISCOSITY: Air-Hockey Puck

PROBLEM STATEMENT:
An air-hockey puck has a mass of 50 g and is 9 cm in diameter. When placed on the air table, a 20° C air film, of 0.12-mm thickness, forms under the puck. The puck is struck with an initial velocity of 10 m/s. Assuming a linear velocity distribution in the air film, how long will it take the puck to 
(a) slow down to 1 m/s?
(b) stop completely?
Also, (c) how far along this extremely long table will the puck have traveled in condition (a)?

SOURCE:
unknown

-----------------------------------------------------------------------------------------------------
PROCESS:
1) Convert all givens to SI units
m = 0.05 kg
D = 0.09 m
T = 1.2×10-4 m
V(t0 = 0) = 10 m/s

2) Look up material properties​
ρair = 1.205 kg/m3 [source]
μair = 1.81×10-5 N⋅s/m2 [source]

3) Analyze the problem & draw a picture​
At some arbitrary time t, there is a linear velocity profile V(t) between the bottom of the puck and the surface of the table. The only force acting on the puck while it is in motion is the drag force. Since this force is against the direction of motion, it is considered negative. This force can be determined by using the shear force equation.

4) Pick out appropriate equations & formulas​
Shear Stress ≡ τ = μ⋅dv/dy = F/A
Areacircle ≡ Aο = πr2
Force ≡ F = m⋅a

5) Plug, Chug, Solve​
Cross sectional area of hockey puck: (in j^ direction)
Aο = πr2 
r = D/2
→ Areapuck ≡ Ap = πD2/4 j^​

Shear Stress: τ = μ⋅dv/dy
dv/dy = V(t)/thickness → dv/dy = V(t)/T
→ dv/dy = V(t)/T
→ τ = μ⋅V(t)/T​

Drag: F = τA= μ⋅dv/dy ⋅A
→ Fdrag = μ⋅V(t)/T ⋅ πD2/4​

Sum of forces: +ΣFy = m⋅ax
m⋅ax = m⋅dV/dt = -Fdrag
→ m⋅dV/dt = -(μ⋅V(t)/T ⋅ πD2/4)
→ dV/V(t) = -(μ⋅πD2)/(4mT) dt

integrate...
ln(V(t)) = -(μ⋅πD2)/(4mT)⋅t +C
→V(t) = C⋅e-(μ⋅πD2)/(4mT)⋅t
V(0) = V0 ... ∴ C = V0
⇒ V(t) = V0⋅e-(μ⋅πD2)/(4mT)⋅t

Now that velocity function has been derived, the remaining is simple kinematics

(a) Time until V(t) = 1 m/s​
V(ta) = 1 m/s = V0⋅e-(μ⋅πD2)/(4mT)⋅ta
ta = [-1⋅ln(1 m/s / V0)⋅4mT] / [πμD2]

(b) Time until V(t) = 0 m/s​
V(tb) = 0 m/s = V0⋅e-(μ⋅πD2)/(4mT)⋅tb
tb = [-1⋅ln(0 m/s / V0)⋅4mT] / [πμD2]​

(c) Distance traveled in part (a)​
V = dx/dt
dx = V⋅dt
→ x(t) = ∫V⋅dt
→ x(t) = (-4⋅m⋅T⋅V0)/(μ⋅π⋅D2)⋅e-(μ⋅π⋅D2)/(4mT)⋅t + C
if x(0) = 0 m.... 0 m = (-4⋅m⋅T⋅V0)/(μ⋅π⋅D2) + C
→ C = (4⋅m⋅T⋅V0)/(μ⋅π⋅D2)
⇒ x(t) = [1-e-(μ⋅π⋅D2)/(4mT)⋅t]⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2)​
→ x(ta) = [1-e-(μ⋅π⋅D2)/(4mT)⋅[-1⋅ln(1 m/s / V0)⋅4mT] / [πμD2]]⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2)
= (1-eln(1 m/s / V0))⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2
= (1-(1 m/s)/( V0)⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2
x(ta) = [V0 - (1 m/s)]⋅(4⋅m⋅T)/(μ⋅π⋅D2)​

6) Plug in actual values​
(a)
ta = [-1⋅ln[1 m/s / (10 m/s)]⋅4⋅(0.05 kg)⋅(1.2×10-4 m)] / [π⋅(1.81×10-5 N⋅s/m2)⋅(0.09 m)2]
ta = 120 s [WolframAlpha Computation]​

(b)
tb = [-1⋅ln[0 m/s / (10 m/s)]⋅4⋅(0.05 kg)⋅(1.2×10-4 m)] / [π⋅(1.81×10-5 N⋅s/m2)⋅(0.09 m)2]
tb = ∞ [WolframAlpha Computation]​
Since this is a logarithmic function, it will never actually reach zero. However, if the settling time is considered, such as that defined by harmonic motion, tsettling = time it takes for velocity to reach 2% of initial velocity
(2%)⋅V0 = 0.2 m/s
Therefore, the time required for it to stop comlpetely can be approimated to about 203.9 s. [WolframAlpha Computation]

(c)
x(ta) = [(10 m/s) - (1 m/s)]⋅(4⋅(0.05 kg)⋅(1.2×10-4 m))/(π⋅(1.81×10-5 N⋅s/m2)⋅(0.09 m)2)
x(ta) = 469 m [WolframAlpha Computation]​

-----------------------------------------------------------------------------------------------------

SOLUTION:
(a)
 ta = [-1⋅ln(1 m/s / V0)⋅4mT] / [πμD2]
 ta = 120 s 

(b)
tb = [-1⋅ln(0 m/s / V0)⋅4mT] / [πμD2]​
 tb = ∞

(c)
x(ta) = [V0 - (1 m/s)]⋅(4⋅m⋅T)/(μ⋅π⋅D2)​
x(ta) = 469 m
-----------------------------------------------------------------------------------------------------

TOPICS COVERED: Viscosity, Puck, Air, Shear Stress, Force, Chapter 10, Velocity, Function

VISCOSITY: Dropping Solid Cylinder

PROBLEM STATEMENT:
A solid cylinder of diameter D, length L, density ρs falls due to gravity inside a tube of diameter D0. The clearance, D0 - D << D, is filled with a film of viscous fluid. Derive a formula for terminal fall velocity and apply to SAE 30 oil at 20° C for a steel cylinder with D=2 cm, D0 = 2.04 cm, and L = 15 cm. Neglect the effect of any air in the tube.

SOURCE:
unknown

-----------------------------------------------------------------------------------------------------
PROCESS:
1) Convert all givens to SI units
D = 0.02 m
L = 0.15 m
D0 = 0.0204 m

2) Look up material properties
ρsteel = 7859 kg/m3 [source]
ρSAE 30 oil = 8.815×10-4 kg/m3 [source]
μSAE 30 oil = 0.310 N⋅s/m2 [source]

3) Analyze the problem & draw a picture
So it asks for us to derive a formula for the terminal fall velocity.
"Terminal velocity is the highest velocity attainable by an object as it falls through a fluid. It occurs when the sum of the drag force and the buoyancy is equal to the downward force of gravity."


4) Pick out appropriate equations & formulas
Shear Stress ≡ τ = μ⋅dv/dy = F/A
Areacircle ≡ Aο = πr2
Circumferencecircle ≡ Cο = 2πr
Volumecylinder ≡ Vcyl = πr2⋅L
Mass ≡ m = ρ⋅V
Force ≡ F = m⋅a

5) Plug, Chug, Solve
Cross sectional area of steel cylinder: (in j^ direction)
Aο = πr2 
r = D/2

→ Areasteel cylinder ≡ As = πD2/4 j^

Shear Stress: τ = μ⋅dv/dy
dv/dy = V(y)/clearance → dv/dy = V(y)/(½⋅(D0 - D))

→ dv/dy = 2⋅V(y)/(D0 - D)
→ τ = μ⋅2⋅V(y)/(D0 - D)

Drag: τ = μ⋅dv/dy = F/A
Fdrag = ∫A τ dA
dA refers to the surface area around the outside of the steel cylinder 
dA = circumference⋅dy = 2π(1/2 D)⋅dy

→ dA = πD⋅dy
plugging equations for dA, dv/dy, & τ into Fdrag equation
→ Fdrag = ∫0L μ⋅2⋅V(y)/(D0 - D)⋅πD⋅dy

→ Fdrag = [2π⋅μ⋅D⋅L⋅V(y)]⋅[D0 - D]-1

Volume of steel cylinder: V = πr2⋅L

→ Vs = πLD2/4

Mass of steel cylinder: m = ρ⋅V

→ ms = ρsπLD2/4

Gravitational force on steel cylinder: F = ma

→ Fg = ρsπLD2/4 ⋅ g

Sum of forces: +ΣFy = 0: 0 = Fdrag - Fg
→ Fdrag = Fg
→ [2π⋅μoil⋅D⋅L⋅V(y)]⋅[D0 - D]-1 = ρsπLD2/4 ⋅ g

V = ρs⋅D⋅g⋅(D0 - D)/(8μ)


6) Plug in actual values
V = (7859 kg/m3)⋅(0.02 m)⋅(9.81 m/s2)⋅[(0.0204 m) - (0.02 m)]/[8⋅(0.310 N⋅s/m2)]
V = 0.2487 m/s     [WolframAlpha Solution]


-----------------------------------------------------------------------------------------------------

SOLUTION:
 V = ρs⋅D⋅g⋅(D0 - D)/(8μ)
V = 0.2487 m/s

-----------------------------------------------------------------------------------------------------

TOPICS COVERED: Viscosity, Solid Cylinder, Oil, Density, Terminal Velocity, Shear Stress, Force, Chapter 10