An air-hockey puck has a mass of 50 g and is 9 cm in diameter. When placed on the air table, a 20° C air film, of 0.12-mm thickness, forms under the puck. The puck is struck with an initial velocity of 10 m/s. Assuming a linear velocity distribution in the air film, how long will it take the puck to
(a) slow down to 1 m/s?
(b) stop completely?
Also, (c) how far along this extremely long table will the puck have traveled in condition (a)?
SOURCE:
unknown
-----------------------------------------------------------------------------------------------------
PROCESS:
1) Convert all givens to SI units
D = 0.09 m
T = 1.2×10-4 m
V(t0 = 0) = 10 m/s
2) Look up material properties
μair = 1.81×10-5 N⋅s/m2 [source]
3) Analyze the problem & draw a picture
4) Pick out appropriate equations & formulas
Areacircle ≡ Aο = πr2
Force ≡ F = m⋅a
5) Plug, Chug, Solve
Aο = πr2
r = D/2
→ Areapuck ≡ Ap = πD2/4 j^
Shear Stress: τ = μ⋅dv/dy
dv/dy = V(t)/thickness → dv/dy = V(t)/T
→ dv/dy = V(t)/T
→ τ = μ⋅V(t)/T
→ τ = μ⋅V(t)/T
Drag: F = τA= μ⋅dv/dy ⋅A
→ Fdrag = μ⋅V(t)/T ⋅ πD2/4
Sum of forces: +ΣFy = m⋅ax:
m⋅ax = m⋅dV/dt = -Fdrag
→ m⋅dV/dt = -(μ⋅V(t)/T ⋅ πD2/4)
→ dV/V(t) = -(μ⋅πD2)/(4mT) dt
integrate...
ln(V(t)) = -(μ⋅πD2)/(4mT)⋅t +C
→V(t) = C⋅e-(μ⋅πD2)/(4mT)⋅t
V(0) = V0 ... ∴ C = V0
⇒ V(t) = V0⋅e-(μ⋅πD2)/(4mT)⋅t
Now that velocity function has been derived, the remaining is simple kinematics
(a) Time until V(t) = 1 m/s
V(ta) = 1 m/s = V0⋅e-(μ⋅πD2)/(4mT)⋅ta
⇒ ta = [-1⋅ln(1 m/s / V0)⋅4mT] / [πμD2]
(b) Time until V(t) = 0 m/s
V(tb) = 0 m/s = V0⋅e-(μ⋅πD2)/(4mT)⋅tb
⇒ tb = [-1⋅ln(0 m/s / V0)⋅4mT] / [πμD2]
(c) Distance traveled in part (a)
V = dx/dtdx = V⋅dt
→ x(t) = ∫V⋅dt
→ x(t) = (-4⋅m⋅T⋅V0)/(μ⋅π⋅D2)⋅e-(μ⋅π⋅D2)/(4mT)⋅t + C
if x(0) = 0 m.... 0 m = (-4⋅m⋅T⋅V0)/(μ⋅π⋅D2) + C
→ C = (4⋅m⋅T⋅V0)/(μ⋅π⋅D2)
⇒ x(t) = [1-e-(μ⋅π⋅D2)/(4mT)⋅t]⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2)
→ x(ta) = [1-e-(μ⋅π⋅D2)/(4mT)⋅[-1⋅ln(1 m/s / V0)⋅4mT] / [πμD2]]⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2)= (1-eln(1 m/s / V0))⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2)
= (1-(1 m/s)/( V0)⋅(4⋅m⋅T⋅V0)/(μ⋅π⋅D2)
⇒ x(ta) = [V0 - (1 m/s)]⋅(4⋅m⋅T)/(μ⋅π⋅D2)
6) Plug in actual values
ta = [-1⋅ln[1 m/s / (10 m/s)]⋅4⋅(0.05 kg)⋅(1.2×10-4 m)] / [π⋅(1.81×10-5 N⋅s/m2)⋅(0.09 m)2]
⇒ ta = 120 s [WolframAlpha Computation]
(b)
tb = [-1⋅ln[0 m/s / (10 m/s)]⋅4⋅(0.05 kg)⋅(1.2×10-4 m)] / [π⋅(1.81×10-5 N⋅s/m2)⋅(0.09 m)2]
⇒ tb = ∞ [WolframAlpha Computation]
Since this is a logarithmic function, it will never actually reach zero. However, if the settling time is considered, such as that defined by harmonic motion, tsettling = time it takes for velocity to reach 2% of initial velocity(2%)⋅V0 = 0.2 m/s
Therefore, the time required for it to stop comlpetely can be approimated to about 203.9 s. [WolframAlpha Computation]
(c)
x(ta) = [(10 m/s) - (1 m/s)]⋅(4⋅(0.05 kg)⋅(1.2×10-4 m))/(π⋅(1.81×10-5 N⋅s/m2)⋅(0.09 m)2)
⇒ x(ta) = 469 m [WolframAlpha Computation]
-----------------------------------------------------------------------------------------------------
SOLUTION:
(a)
ta = [-1⋅ln(1 m/s / V0)⋅4mT] / [πμD2]
ta = 120 s
(b)
tb = [-1⋅ln(0 m/s / V0)⋅4mT] / [πμD2]
tb = ∞
(c)
x(ta) = [V0 - (1 m/s)]⋅(4⋅m⋅T)/(μ⋅π⋅D2)
x(ta) = 469 m
-----------------------------------------------------------------------------------------------------
TOPICS COVERED: Viscosity, Puck, Air, Shear Stress, Force, Chapter 10, Velocity, Function